
Diffusion Quantum Monte Carlo:

A Java Based Simulation and Visualization

Ian Terrell

April 16, 2004

Abstract

After giving a brief background and theoretical discussion of the
subject, this paper details the implementation of both a Diffusion
Quantum Monte Carlo simulation of a one dimensional simple har-
monic oscillator, and a graphical user interface to the simulation which
can be used to explore the qualitative results of different parameters
input to the system.

1

Contents

1 Background 3

1.1 Monte Carlo Simulation 3
1.2 Quantum Monte Carlo Simulation 3
1.3 Project Motivation and Description 3

2 Theory 4

2.1 Relevant Quantum Mechanics 4
2.1.1 Simple Harmonic Oscillator 5

2.2 Diffusion Monte Carlo Algorithm 5
2.2.1 Overview . 5
2.2.2 Algorithm . 6
2.2.3 Dimensionless Units 7

3 Project 8

3.1 The Simulation . 8
3.2 The Visualization . 9

3.2.1 Graphs . 9
3.3 Project Webpage . 11
3.4 Further Work . 11

3.4.1 User Interface Design 11
3.4.2 Simulation . 11

2

1 Background

1.1 Monte Carlo Simulation

Monte Carlo simulation is a class of numerical techniques that uses
stochastic processes to solve mathematical problems that are either
too difficult or impossible to solve either analytically or with other
deterministic numerical techniques. Although the specifics of a Monte
Carlo simulation vary greatly from application to application, all Monte
Carlo simulations fit into a basic common structure.

A Monte Carlo simulation involves a large number of iterations of
an algorithm that manipulates some set of data in a random fashion.
From this data, an estimation P̂ of a property P is made. Although
the details of the governing statistical laws[1] are complicated, the
basic idea is that in the limit as the number of iterations n→ ∞, the
simulated result P̂ converges to the actual empirical value of P . Given
that it takes a large number of iterations involving a large quantity of
random numbers to obtain an estimate of a property near its empirical
value, Monte Carlo simulation is a task well suited for computers.

1.2 Quantum Monte Carlo Simulation

The fundamental relation in quantum mechanics is the Schrödinger
Equation:

ih̄
∂

∂t
Ψ = − h̄2

2m
∇2Ψ + VΨ, (1)

where Ψ is the wavefunction of the system and V is the potential of the
system. This is a second order, complex, partial differential equation;
it is impossible to solve for all but the simplest of systems. A few differ-
ent Monte Carlo simulation techniques have been successfully applied
to gain information from quantum systems by numerically manipulat-
ing mathematical features of the Schrödinger Equation. This project
explores one of those methods, Diffusion Quantum Monte Carlo, which
can be used to estimate the ground state and, in principle, excited
state energies and wavefunctions of complex quantum systems[2].

1.3 Project Motivation and Description

Although the basic theory of Diffusion Monte Carlo is easy to learn,
there are many nuances of the process that are less obvious. The
primary purpose of this project is to construct a visual learning aid
that will help anyone with a basic understanding of quantum mechan-
ics to more quickly and thoroughly learn the Diffusion Monte Carlo
process. To accomplish that goal, the project has two parts. First,

3

an example Diffusion Monte Carlo simulation system, based off of a
tutorial article[3], is implemented and applied to calculate the ground
state wavefunction and energy of a single particle in a one dimen-
sional simple harmonic oscillator. Second, a graphical user interface
to that simulation is implemented. This graphical user interface pro-
vides an easy method of inputting parameters to the simulation as
well as provides a graphical representation of various measurements
calculated by the simulation. Through this interface, a user can eas-
ily and quickly see the results of experimentation with different input
parameters, gaining important qualitative knowledge and experience
in the process.

2 Theory

The simulation implemented is based off of the algorithm described by
Ioan Kosztin, Byron Faber, and Klaus Schulten; as such, the necessary
theory behind Diffusion Monte Carlo simulation given here parallels
the development of their paper. For a full discussion of the theory
and their algorithm, the reader is strongly encouraged to view their
original paper.[3]

2.1 Relevant Quantum Mechanics

If the potential V in the Hamiltonian (H = − h̄
2

2m
∇2 + V) is time

independent, then the time dependence of Eq. (1) can be separated.
The solutions to the time independent Schrödinger equation are found
by solving the equation

Hφn = Enφn (2)

where En are the eigenenergies of the eigenfunctions φn, ordered as
E0 < E1 ≤ E2 The time dependent eigenfunctions are then found
(by solving the separated ordinary differential equation for time) to
be

ψn = φne
−

iEnt

h̄ . (3)

Any wavefunction can be written as a linear combination of eigenfunc-
tions in a particular basis as

Ψ =
∞
∑

n=0

cnψn =
∞
∑

n=0

cnφne
−

iEnt

h̄ . (4)

The Diffusion Monte Carlo process critically depends on two trans-
formations being made to Eq. (4). The first is a simple shift of the

4

energy scale by a constant ER, the reference energy. This shift trans-
forms En → En − ER. The second transformation is less trivial, and
involves the introduction of imaginary time, τ = it.

These two changes transforms Eq. (4) to

Ψ =
∞
∑

n=0

cnφne
−

(En−ER)τ

h̄ . (5)

If ER = E0 we see that

Ψ = c0φ0 +
∞
∑

n=1

cnφne
−

(En−E0)τ

h̄ , (6)

from which we notice that, assuming τ is real,

lim
τ→∞

Ψ = c0φ0. (7)

2.1.1 Simple Harmonic Oscillator

The only potential looked at in the project is the potential of the
simple harmonic oscillator, which is given as

V (x) =
1

2
mω2x2. (8)

This is a well understood, solved problem, with the ground state en-
ergy

E0 =
1

2
h̄ω (9)

and the ground state wavefunction

φ0(x) =

(

mω

h̄π

)
1
4

e−
mωx

2

2h̄ . (10)

2.2 Diffusion Monte Carlo Algorithm

2.2.1 Overview

The Diffusion Monte Carlo algorithm can be summarized as follows:
an unnormalized wavefunction Ψ is represented numerically as a dis-
tribution of walkers, which can be though of as points in space having
a definite position. These walkers are propagated through imaginary
time, dying off or being created at each iteration depending on their
position, their potential energy, and the average potential of all of
the walkers, which is interpreted as the energy of the system. The
initially incorrect reference energy is constantly adjusted to keep an
approximately constant number of walkers. After a large number of

5

iterations, the average of many successive measurements of ER will
approach the actual E0 of the system, and the distribution of the su-
perposition of the walkers of many successive iterations will converge
to the ground state wavefunction φ0 by virtue of Eq. (7).

2.2.2 Algorithm

The algorithm to manipulate the walkers and obtain the ground state
energy and wavefunction is as follows:

1. At the start of the simulation,

(a) Ni initial walkers are distributed in space to make up some
initial wavefunction Ψ.

(b) the reference energy is set to be the average potential of the
walkers.

2. At each iteration of the simulation,

(a) the time τ is advanced by a small ∆τ .

(b) the walkers’ positions are changed by a random variate from
a Gaussian distribution with mean 0 and standard deviation

σ =

√

h̄∆τ

m
. (11)

(c) the updated reference energy is calculated from the newly
arranged walkers by the function

ER = 〈V 〉 + α

(

1 − N

Ni

)

(12)

where 〈V 〉 is the average potential of all of the walkers, and
N is the current number of walkers.

(d) for each walker a number m is calculated by

m = bW (x) + Uc (13)

where U is a random number uniformly distributed from 0
to 1, and W (x) is the weight of the walker with position x,
defined as

W (x) = e−
(V (x)−ER)∆τ

h̄ . (14)

If m = 0, the walker is destroyed. If m = 1, nothing is done
to the walker. If m > 1, m − 1 copies of the walker are
made. To prevent uncontrolled growth, a maximum of two
copies of any given walker are made at each iteration.

6

3. To estimate the ground state energy, the reference energies of
successive iterations are averaged. To estimate the ground state
wavefunction, the spacial distribution (histogram) of the walkers
of successive iterations is recorded and normalized.

The specifics of the algorithm, especially Eq. (11-14), are derived
from the Feynman path integral solution of the Schrödinger equation.
Their derivations can be found in the article by Kosztin, et al[3].

2.2.3 Dimensionless Units

To implement the algorithm in a standard programming language,
the relevant physical quantities must be converted to dimensionless
units. To do this, each physical quantity is expressed as a product of
its magnitude and a unit (L, T and E for length, time, and energy).
Then, each of the units are set to values that are both convenient with
respect to the potential, and also satisfy the relations

h̄T

2mL2
=

1

2
(15)

and
TE
h̄

= 1. (16)

Using T = 1/ω for the simple harmonic oscillator potential, we are
able to rewrite the necessary equations in convenient dimensionless
units.[3]

The potential (Eq. (8)) becomes

V (x) =
1

2
x2; (17)

the ground state energy of the system (Eq. (9)) becomes simply

E0 =
1

2
; (18)

the ground state wavefunction (Eq. (10)) becomes

φ0(x) = π−
1
4 e−

x
2

2 ; (19)

the standard deviation of the Gaussian random variate used to displace
the walkers (Eq. (11)) becomes

σ =
√

∆τ ; (20)

and finally, the weight function of the walkers (Eq. (14)) becomes

W (x) = e−(V (x)−ER). (21)

7

3 Project

3.1 The Simulation

Steps 1 and 2 of the Diffusion Monte Carlo algorithm given in Sec-
tion 2.2.2 were implemented with modularized classes in Java[4]. Since
Step 3 of the algorithm is just data collection, it is left up to the user
of the software to implement. The implemented package dmc includes
the following classes:

• The Walker class contains the position of each walker.

• The DMC class contains all of the necessary functions to imple-
ment the Diffusion Monte Carlo algorithm given.

– DMC(...) - This constructor implements Step 1 of the al-
gorithm. It initializes the simulation, by setting the values
of all of the variables necessary in the simulation to the val-
ues passed. It initializes the walkers’ positions either with a
delta function δ(x − x0), or randomly according to either a
Uniform(a,b) distribution or a Gaussian(µ,σ) distribution.
It also provides a mean to override the default behavior of
having the reference energy be the average potential at the
locations of all of the walkers, and provides a mean to use the
suggested[3] dimensionless feedback parameter α = 1/∆τ .

– V(double x) - This function returns the potential at the
location x. It is meant to be overwritten by derived classes.

– W(Walker w) - This function computes the weight of the
walker w as given by Eq. (21).

– Iterate() - This function does one complete iteration of the
simulation, including updating the imaginary time variable
τ (Step 2.a), calling walk() and branch().

– walk() - This function moves all of the walkers by a random
number from a Gaussian(0,σ) distribution, where σ is given
by Eq. (20) (Step 2.b). To keep computation time down, as
each walker is moved its potential is recorded, and before
returning this function updates the reference energy of the
system (Step 2.c).

– branch() - This function branches the walkers as described
in Step 2.d of the algorithm, calculating m from Eq. (13)
for each walker, and creating or destroying the walkers as
needed.

• The DMC SHO class extends the DMC class and overrides the func-
tion V(double x) to return the potential for the simple harmonic
oscillator as given in Eq. (17).

8

3.2 The Visualization

A complete graphical user interface to the simulation was written in
Java using its Advanced Windowing Toolkit and Swing advanced pro-
gramming interfaces. It provides graphical means to input parameters
to the simulation and display various measurements output by the
simulation.

The main class GUI contains almost all of the standard user inter-
face setup code, which creates all of the labels, text boxes, etc, and
handles events such as the user pressing a button. In addition, the
class

• provides mechanisms to start, pause, continue, and reset the
simulation.

• provides methods to input the initial number of walkers (Ni from
Step 1.a of the algorithm), the timestep (∆τ from Step 2.a), the
feedback parameter (α in Eq. (12), the initial reference energy,
and the seed for the random number generator for the simulation.

• provides a mechanism to select the desired method of initializing
the walkers, including parameter input.

• provides graphs to display the current number of walkers, the
current reference energy, a histogram of the walkers’ position,
the current estimate of the ground state energy, and the current
estimate of the ground state wavefunction.

• provides various graphing options, including the ability to change
the colors of the graphs, display data as either discreet points or
connected lines, choose whether or not to graph the theoretical
values, how many points to display at once, etc.

• provides special features such as the ability to keep the refer-
ence energy constant, stop collecting E0 estimation data after
a certain number of iterations, and only start collecting the φ0

estimation data after a certain warmup period.

• provides the ability to manipulate how fast the simulation runs.

3.2.1 Graphs

In order to display the data graphically, several graphing classes had
to be written. These were all derived from a freely distributed Graph

class[5].

• Histogram - This class implements a histogram graph to display
the distribution of walkers at any given iteration. The data can
be displayed as either bars or points.

9

Figure 1: A screenshot of the visualization graphing the current number of

walkers, and the estimates of E0 and φ0 after they had mostly converged to

their theoretical values.

Figure 2: A screenshot of the settings panel of the visualization.

10

• DataGraph - This class implements a graph to display scatterplot
data as either discrete points or connected lines. It uses the
GraphData class to store data.

• Phi0Histogram - This class implements a specialized histogram
to display the estimate of φ0.

• Function - This class is meant to be used as a superclass, and
provides a method to draw a function on a graph. It is used to
draw the theoretical values on the graphs.

3.3 Project Webpage

A webpage[6] was created to act as a portal for information about the
project. For developers it provides links to download the complete
source code and view the JavaDoc for the source code. For users,
it displays the visualization, as well as provides a tutorial describing
how to use the visualization, and contains a list of frequently asked
questions to troubleshoot problems.

3.4 Further Work

3.4.1 User Interface Design

The underlying design of the graphical user interface could use some
modularization before the parts can be used easily in other graphical
simulation programs. Specifically, it would be useful to

• modularize all graphical aspects of each type of graph into an-
other class, and get the graph specific members out of the high
up GUI.

• modularize all aspects of each potential into another class, etc.

• Remove all unnecessary data members, perhaps through using
action commands in the event handling instead of the event
source.

• Modularize the event handling into multiple classes that each
handle events from a certain type of object.

3.4.2 Simulation

The simulation package written is very general, and will work with
any well behaved one dimensional potential. Once the graphical de-
sign is more modularized, it would be easy to add potentials to the
visualization.

11

The simulation could also be easily extended to work in multiple
dimensions with multiple particles, or to utilize additional Diffusion
Monte Carlo algorithms, such as importance sampling.

References

[1] Namely, the Central Limit Theorem. For an analytically thor-
ough discussion of the theorem as it pertains to simulation, see
Simulation Modeling and Analysis, Third Edition, by Averill
M. Law and W. David Kelton, McGraw-Hill Higher Education,
2000, page 254.

[2] Peter J. Reynolds, Jan Tobochnik and Harvey Gould, “Diffusion
Quantum Monte Carlo,” Computers in Physics, Nov/Dec 1990,
Volume 4, Issue 6, pp. 662-668.

[3] Ioan Kosztin, Byron Faber and Klaus Schulten, “Introduction
to the Diffusion Monte Carlo Method,” American Journal of

Physics, May 1996, Volume 64, Issue 5, pp. 633-644.

[4] The source code is thoroughly documented with JavaDoc style
comments, and although the source code is fairly concise, the
comments swell the files to over 400 lines for the simulation and
about 3000 lines for the graphical user interface. For this reason,
the source is not included here, but is freely available through
the project webpage[6].

[5] The Graph class used is freely available from the Univer-
sity of Alabama in Huntsville at http://www.math.uah.edu/

psol/objects/edu/uah/math/devices/Graph.html

[6] http://merlin.physics.wm.edu/~ian/dmcview/

12

